
Tetrahedron Letters 50 (2009) 2899–2903
Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier .com/ locate/ tet le t
Specific features of the reactions of quinazoline and its 4-hydroxy and
4-chloro substituted derivatives with C-nucleophiles

Yuri A. Azev a,b,*, Sergey V. Shorshnev c, Boris V. Golomolzin a

a Ural Scientific Research Institute of the Technology of Medical Preparations, 620219 Ekaterinburg, Russian Federation
b Department of Chemistry, Ural State Technical University, 620002 Ekaterinburg, Russian Federation
c Chembridge Corporation, 119435 Moscow, Russian Federation

a r t i c l e i n f o a b s t r a c t
Article history:
Received 24 October 2008
Revised 21 January 2009
Accepted 27 March 2009
Available online 2 April 2009

Keywords:
Quinazoline
Nucleophiles
Transformations
0040-4039/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.tetlet.2009.03.199

* Corresponding author.
E-mail address: azural@yandex.ru (Y.A. Azev).
Reactions of quinazoline 1 with indole, pyrogallol and 1-phenyl-3-methylpyrazol-5-one in the presence
of acid led to C-4 adducts 2, 3 and 5. Adduct 4 is formed by heating 1 with 1,3-dimethylbarbituric acid
without acid catalysis. 1-Phenyl-3-methylpyrazol-5-one reacts with 1 without acid catalysis to form
dipyrazolylmethane 6. 4-Chloroquinazoline 8 reacts with 1-phenyl-3-methylpyrazol-5-one to form
4-(1-phenyl-3-methyl-5-oxopyrazol-4-yl) quinazoline 9 and dipyrazolylmethane 6. Heating 8 with
2-methylindole leads to the formation of 4-(2-methylindol-3-yl) quinazoline 10 and tris(2-methylin-
dol-3-yl)methane 11.

� 2009 Elsevier Ltd. All rights reserved.
The quinazoline moiety is an important part of many natural
alkaloids.1 Compounds with diverse biological activities (hypo-
tonic, antiallergenic, antibacterial and anthelminthic) have been
found among quinazoline derivatives.2 The search for antagonists
of folic and isofolic acids as cellular mitosis inhibitors has received
significant attention recently.3,4 Antitumour2 and radioprotec-
tive5,6 quinazoline derivatives have also been synthesized.

In acidic medium, unsubstituted quinazoline was found to form
a covalent hydrate at the N3@C4 bond.7 Similarly, 3-methylquinaz-
olinium iodide undergoes addition of alkyl- and arylamines and in-
doles to form 4-substituted-3,4-dihydroquinazolines.8

In this work, we found that unsubstituted quinazoline 1, on
heating with indole in boiling butanol for 2 h in the presence of tri-
fluoroacetic acid, afforded the stable salt 4-(indol-3-yl)-3,4-dihy-
droquinazoline 2 (Scheme 1). 4-(2,3,4-Trihydroxyphenyl)-3,4-
dihydroquinazoline 3 was obtained on heating quinazoline with
pyrogallol in boiling ethanol for 2 h in the presence of hydrochloric
acid. Products 2 and 3 precipitated after the reaction mixture had
been cooled and were isolated in pure state by filtration.

We observed quantitative formation of 4-(1,2,3,4,-tetrahydro-
6-hydroxy-1,3-dimethyl-2,4-dioxopyrimidin-5-yl)-3,4-dihydro-
quinazoline 4 when recording the 1H NMR spectrum of a solution
of the reaction of an equimolar mixture of quinazoline 1 and 1,3-
dimethylbarbituric acid in dimethyl sulfoxide at room tempera-
ll rights reserved.
ture. We also isolated adduct 4 in crystalline state after heating
the starting components in n-butanol for a short time.

Heating quinazoline 1 with 1-phenyl-3-methylpyrazol-5-one in
boiling n-butanol in the presence of trifluoroacetic acid for 2 h
produced 4-(1-phenyl-3-methyl-3-oxopyrazol-4-yl)-3,4-dihydro-
quinazoline trifluoroacetate 5. At the same time, the known 4,
4-methylidene-bis(1-phenyl-3-methylpyrazol-5-one) 69 was ob-
tained by heating quinazoline 1 for 10 h with a threefold excess
of 1-phenyl-3-methylpyrazol-5-one in boiling n-butanol without
acidic catalysis. After cooling the reaction mixture, product 6 was
filtered off and recrystallized from n-butanol (35% yield).

Dipyrazolylmethane 6 may be formed via nucleophilic attack of
1-phenyl-3-methylpyrazol-5-one at the C-2 atom of 1 followed by
pyrimidine ring-opening and attack of a second pyrazolone fol-
lowed by elimination (Scheme 2).

4-Chloroquinazoline 8 (Scheme 3) reacts with a threefold molar
excess of 1-phenyl-3-methylpyrazol-5-one in dimethylsulfoxide in
the presence of triethylamine to form the substitution product,
namely, 4-(1-phenyl-3-methyl-5-oxopyrazol-4-yl)-quinazoline 9
(45% yield) along with dipyrazolylmethane 6 (6% yield).

Product 9 was isolated by recrystallization of the precipitate ob-
tained from the cooled reaction mixture from ethanol. Treatment
of the mother liquor from the recrystallization of 9 with water gave
dipyrazolylmethane 6. The formation of product 6 indicates that, in
this case, competitive nucleophilic attack at the C-2 atom of qui-
nazoline occurs along with nucleophilic substitution of the
halogen.

The halogen substitution product 4-(2-methylindol-3-yl)-qui-
nazoline 10, and the known tris(2-methylindol-3-yl)-methane
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1110 were obtained by heating 4-chloroquinazoline 8 with a three-
fold molar excess of 2-methylindole in boiling ethanol for 1 h.
Tris(indolylmethane) 11 was filtered off from the cooled reaction
mixture (10% yield). The mother liquor was dried and 10 was iso-
lated from the solid residue by thin layer chromatography on silica
(Rf = 0, chloroform).

The formation of tris(indolylmethane) 11 results from nucleo-
philic attack of indole on the C-2 atom of 4-chloroquinazoline 8 fol-
lowed by further transformation via Scheme 4.

The high reactivity of 4-chloroquinazoline towards C-nucleo-
philes is due, most likely, to the autocatalytic effect of the hydro-
gen chloride evolved upon substitution.

Heating of product 9 in boiling n-butanol in the presence of
water also affords dipyrazolylmethane 6 in 14% yield. Product 6
was isolated by filtration after cooling the reaction mixture. The
formation of dipyrazolylmethane 6 is preceded, most likely, by
nucleophilic substitution of the pyrazole residue for the hydroxy
group.
Initially formed pyrazolone attacks 4-hydroxyquinazoline at the
C-2 atom. Next, the heterocycle is cleaved, and a second attack of
pyrazolone occurs, leading eventually to product 6 (Scheme 5).

The validity of this assumption is confirmed by the formation of
dipyrazolylmethane 6 (9% yield) on heating an authentic sample of
4-hydroxyquinoline 7 with 1-phenyl-3-methylpyrazol-5-one in
boiling n-butanol for 15 h.

Characteristic properties for adducts 2-5 are signals for the H-4
proton in the range 6.0–6.5 ppm.11 Note that in the 2D-NOESY
spectrum of compounds 4, detection of the cross-peak connecting
the proton nucleus at C-4 (heterocyclic fragment) with the proton
at C-5 (aromatic cycle) that unequivocally confirms the structures
of these C-4 adducts (Fig. 1).

The electron impact mass spectrum of adduct 2 exhibited an in-
tense peak due the molecular ion at m/z 247. At the same time,
only molecular ions of the starting components and products of
their decomposition were detected in the EI spectra of adducts 3,
4 and 5.
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It is noteworthy that these unusual transformations result from
nucleophilic attack on the C-2 atom of quinazoline without exter-
nal activation (catalysis). The described transformations open
opportunities for the synthesis of new, potentially biologically ac-
tive products and have fundamental value in quinazoline
chemistry.



Figure 1. 2D-NOESY NMR spectrum of compound 4.
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302 (M+). Anal. Calcd for C18H14N4O: C, 71.5; H, 4.7; N, 18.5. Found: C, 71.2; H,
4.4; N, 18.2.Compound 10: mp 225–227 �C; 1H NMR (400 MHz, DMSO-d6): d
2.61 (s, 3H, CH3), 6.60–8.10 (m, 8H, CHarom), 9.20 (s, 1H, H-2), 11.54 (s, 1H, NH).
MS: m/z 259 (M+). Anal. Calcd for C17H13N3: C, 78.7; H, 5.1; N, 16.2. Found: C,
78.5; H, 4.8; N, 16.0.


